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Abstract—Since browser extensions are prevailingly executed
in the background to enable extra functionalities and enhance the
user experience for web browsers, the potential over-collection of
personal data beyond the necessity for given purposes is always
ignored by ordinary users. Existing privacy regulations, such
as the principle of Data Minimization in GDPR, have provided
the criteria that only directly relevant and necessary data for
specified purposes should be collected. Various tools have made
efforts to examine the compliance of data minimization and its
equivalent in different application domains. To our knowledge,
in the area of browser extensions, there is still a gap between
the general data minimization principle and precisely defined
extension behaviors. We propose MINDAEXT, a framework that
takes one step further to automatically examine end-to-end data
minimization practices in browser extensions by description text
analysis and hybrid program analysis techniques.

In our large-scale measurement, covering around 200K ex-
tensions collected in October 2023, we find that 38.0% of
extensions are likely to collect private user data outside their
essential functionality scopes. They are distributed across all
categories, exhibiting distinct patterns of the target data types.
Our evaluation shows that MINDAEXT can detect the data over-
collection with a precision of 74.3%.

I. INTRODUCTION

Recent privacy regulations, such as General Data Protection
Regulation (GDPR) [43] in the EU and the California Privacy
Rights Act (CPRA) [30] in the US, have defined a set of
principles on personal data processing to provide a legal basis.
In particular, data minimization is the principle against the
excessive data processing issue, requiring the collection of
personal information to be “directly relevant and necessary
to accomplish a specified purpose”.

In response to the data minimization principle, major ex-
tension platforms (e.g., Chrome and Firefox) have enacted to
eliminate excessive data collection by requiring developers
to access “the least amount of data” [16]. Unfortunately,
this requirement is hardly sufficient and practical to ensure
compliance from them, as there is a lack of clear and ac-
tionable steps throughout the compliance auditing process. In
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this context, it is necessary to give an end-to-end analysis
technique that analyzes the application directly and determines
whether excessive personal data collection exists, required
by data minimization principle. However, the boundary of
data minimization is vague, and it is hard to define precisely
which personal data is relevant and necessary to the pur-
pose/functionality of browser extensions. Some attempts [8],
[14], [37], [13], [15], [1] have been published to give some
steps forward, defined or examined data minimization prac-
tices in various application scenarios, such as Mobile Appli-
cations [1], Trigger-Action Platform [8], and etc. But none
of these works provide an end-to-end solution to examine the
compliance of data minimization in browser extensions.
Challenges and contributions. Analyzing the compliance of
the data minimization principle among browser extensions
poses several challenges.

The first challenge is determining the set of minimized per-
sonal data essential to each extension’s purpose/functionality.
Due to the ambiguity in the definition of minimization, POL-
ICYCOMP [1] first attempts to automate the identification of
minimized personal data for general applications in various
purposes/functionalities. There is still no objective and well-
recognized standard to draw a clear boundary between the
essential and excessive data for a particular extension.

The Second challenge is identifying the set of personal data
collected by extensions. Both static and dynamic analysis,
like data flow and network traffic analysis, have limitations
in large-scale or precise studies [49]. The precision is limited
by consensual challenges, such as the path explosion in data
flow analysis and data identification in network traffic analysis.

To meet these challenges, we mainly contribute to the
following aspects:

• An end-to-end automatic approach for data minimiza-
tion practice analysis. We propose an automatic end-to-
end analysis approach, MINDAEXT, which consists of
two components: a minimized data inferer and a collected
data analyzer. Minimized data inferer extracts a set of
minimized personal data (MPD) essential based on the
purpose while collected data analyzer extracts a set of



collected personal data (CPD) for each extension in
practice. By comparing the difference between MPD set
and CPD set, it flags the excessive data the extension
collects. MINDAEXT provides a reference in privacy law
compliance auditing, instead of legality judgment.

• A practical definition to data minimization. We lever-
age a multi-source approach to identify an extension’s
MPD set based on extension description and references
from counterparts/similar extensions. In the description
analysis, we compare recent popular NLP models (i.e.
LSTM, BERT, GPT-4.0, and GPT-3.5) and choose the
best performer, BERT, to identify MPD from descrip-
tion texts. In counterpart reference, we inherit the core
idea from POLICYCOMP [1] that the common data
types collected by most counterpart extensions have a
higher possibility of being MPD. We identify counterpart
extensions from description text similarity. Based on a
threshold, we extract the common collected data types of
these counterparts to MPD set. A final MPD set is the
union set of these two sources.

• A manually labeled corpus For the analysis of de-
scriptions, we construct a corpus MINDA-128 [33] with
2421 sentences manually labeled by 12 data types. This
corpus is used to train NLP models to identify data
types mentioned by the description text and examine the
accuracy of GPT-3.5 in our scenario.

• A large-scale measurement. We deploy MINDAEXT
and present a large-scale data minimization practices
analysis on 142,756 extensions available in the Chrome
Web Store and Firefox Browser Add-ons collected in
October 2023. Our results reveal the status quo of the
data minimization practices among mainstream browser
extensions in terms of the distribution among different
categories, excessively collected data types, code features,
etc. We found that 38.0% of the examined extensions are
likely to be incompliant with GDPR’s data minimization
principle.

Ethical considerations. Any output from MINDAEXT only
provides a reference to lawyers to help audit the compliance
of data minimization. Because interpretation of Data Mini-
mization from developers, service providers, and even platform
operators could be inconsistent and subjective. The judgment
of compliance with data minimization must involve lawyers’
efforts. Furthermore, we partially anonymize the results to
avoid any potential legal disputes with service providers and
platform operators.

Roadmap. This paper is organized as follows. Sec. II intro-
duces related works. Sec. III shows a toy example and formal
definition. Sec. IV gives an overview design of MINDAEXT,
while Sec. V and Sec. VI detail the methodology of construct-
ing MPD and CPD set. Sec. VII evaluates MINDAEXT and
presents the result of large-scale analysis. From Sec. VIII to
Sec. XI are the discussion and conclusions.

II. BACKGROUND AND RELATED WORK

In this section, we review the state-of-the-art works in an-
alyzing data minimization regulatory compliance and privacy
analysis for web and mobile applications.

A. Analysis of Privacy Compliance

Many efforts have been put into privacy analysis in web
applications [34], [28], [23] and Android applications [46],
[39], [20], [21], [45], [11]. In more detail, Slavin et al. [39]
design and implement a privacy violation checking framework
to semi-automatically check the inconsistency between the
privacy policy and actual practice of Android apps. Yu et
al. [46] develop a framework named PPChecker, analyzing
the trustworthiness of privacy policies by NLP and program
analysis to check the incorrectness, incompleteness and incon-
sistency in privacy policies. Zimmeck et al. [49] define private
data practices and achieve a large-scale privacy compliance
analysis in mobile apps. Liu et al. [26] investigate privacy
compliance among analytics libraries using static and dynamic
analysis. Nguyen et al. [29] reveal that more than 20K apps
send out personal user data before or without consent. More
recently, Wang et al. [44] present a static analysis tool, APER,
to detect asynchronous runtime permission issues in Android
Apps, and investigate the status quo of those permission issues
in the Google Play Store.

Due to the current popularity of browser extensions, their
privacy issues have been brought to the public horizon. Ling
et al. [25] and Bui et al. [6] conduct similar works in parallel,
studying the compliance between the privacy statements and
actual practices of browser extensions at scale. Compared to
our work, their works mainly focus on checking the con-
sistency between privacy policy and actual behavior without
touching on specific data principles such as data minimization.

B. Analysis of Data Minimization Compliance

With increased emphasis on privacy, many works have been
targeting different aspects of privacy compliance, such as that
in privacy policy [4], [42], [7] and privacy-sensitive prac-
tices [47], [48], [2]. Since GDPR defined the principle of data
minimization, several works [5], [1], [3], [35], [38], [32] have
targeted for defining criteria for data minimization in a wide
range, covering from formal definition to complex application
design. In particular, Basin et al. [5] propose a formal method
to audit a data collection’s adherence to its purpose. Instead
of defining the necessity of data, Basin et al. solve it in a
reverse way by determining unnecessary data: check whether
data that has been collected is used. If not, it is unnecessary
data and violates data minimization. Chen et al. [8] propose
minTAP, an automatic minimized data checker, to reduce the
over-privilege in function attributes. The core insight is similar
to checking unnecessary data: if the absence of data does not
affect the normal execution of the program, it violates data
minimization. Any absence of minimized data could make
certain functions not being completed. However, the approach
proposed by minTAP is not portable to a general application,
such as mobile applications and browser extensions, because



TABLE I
DATA TYPES AND DESCRIPTIONS

Data Types Abbr. Description
User Profile Information UPI personally identifiable information (e.g., Email)
Health Information HI health condition and medical records
Financial and Payment Information FPI payment information and records
Authentication Information AI account credentials
Personal Communication Information PCI individual communications with other parties
Location Information LI geolocation location in any form (e.g., GPS)
Web History Information WHI list of web pages a user has visited
User Activity Information UAI interactions with the browser (e.g., clicks)
Website Content Information WCI rendered content from websites
Device Information DI hardware settings/configurations
Privacy-related Settings PS privacy-related browser configurations
File System FS local file system

TABLE II
IDENTIFIED DATA COLLECTION FOR Ext A

Sources Data Types

MPD website content, user activity, authentication information,
personal information and privacy-related settings

Static Features user activity, location information, and website content
CPD Dynamic Features authentication information, personal information,

financial and payment information(optional), website content

it is hard to determine whether the lack of certain data affects
the functionality of extensions.

Zhou et al. [1] propose POLICYCOMP and take the first
attempt to find out minimized data for an application directly.
They believe that data used by most of its counterparts has a
higher possibility of being the necessary data. Counterparts are
a set of similar applications with similar functionalities. They
calculate the likelihood of data being necessary based on the
proportion of it in counterparts. Compared to our work, they
mainly focus on the compliance of data collection declarations
in privacy policies without checking actual practices. We
reference their method as one part of the MPD construction
and complement it with data collection practice analysis to
further study data minimization fulfillment in the real world.

III. A SAMPLE DATA MINIMIZATION ANALYSIS AND
PROBLEM FORMALIZATION

Given an extension, two challenges exist in analyzing
its data minimization practices, as mentioned in Section I:
1) What are the extension-specific minimized personal data
(MPD)? 2) What are the actual collected personal data (CPD)
from extensions? In this section, we first illustrate our solution
using a sample analysis of an extension Ext A 1 from the
Chrome Web Store. Then, we formalize the data minimization
problem.

A. Running Example: Ext A

We consider 11 types of personal data (as listed in Table I)
where nine are given by Chrome [17], and three are additional
privacy-related data types (i.e., DI, PS, and FS) identified from
our manual inspection.
MPD extraction. The MPD is constructed from the ex-
tension’s description and counterpart references. For the de-
scription text analysis, as shown in Figure 1, a sentence
is highlighted if it is relevant to the target data types and

1Extension ID:lokxxxxxxxxxxxxxxxxxxxxxxxxxmoci (the real ID is par-
tially anonymized to avoid legal disputes), installs: 400K+

Fig. 1. Description of Ext A

vice versa. In this way, we get the first part of MPD. For
counterpart references, it is inspired by POLICYCOMP [1]
that the common data types collected by most counterparts
should be adequate, necessary, and relevant to the purpose.
We reference 10 of its counterparts’ data collection practices
in this example. In particular, the 10 counterparts are selected
from the “Related” section in Chrome Web Store, contain-
ing officially recommended extensions with similar functions.
Note that referring “Related“ recommendation is not included
in MINDAEXT and is only used in this toy example to simplify
the selection of counterparts and better illustrate the main
approach. We identify CPD in these counterparts manually.
Then, we extract data types collected by the vast majority (i.e.,
over 8 out of 10) of counterparts as the second part of MPD
for Ext A. The union of the above two sets constructs the final
MPD for Ext A, as listed in Table II.
CPD extraction. CPD is constructed from static and dynamic
features by examining the source code and interacting with
UIs. Note that the extraction of counterpart CPD above is the
same as here. In the static features, we check all the requested
APIs related to data collection behavior. For example, in
Figure 2(a), the navigator.geolocation API indicates
access to location information. In the dynamic features, we
interact with the extension, click all the buttons, monitor
network traffic, and record generated HTML files during the
process. We capture data collection behavior through user
inputs and network transfer. For example, a registration page
indicates the collection of personal information. The CPD set
for Ext A is shown in Table II.
Excessive data collection. By comparing MPD with actual
practices CPD, we find a violation of the data minimization
principle in Ext A. It excessively collects users’ location infor-
mation in the background JavaScript code captured by static
feature analysis. In our manual confirmation, it is irrelevant to
any functionality indicated in the description text or referred
to in counterparts.

Moreover, the location information and two other data



Fig. 2. Data Collection Practices of Ext A

types (i.e. authentication and payment information) are not
declared in its Privacy Practices on the Chrome Web Store,
as shown in Figure 2 (b). This is a common issue alerted
by recent research [25], [6] that Privacy Practices declared
by developers are inconsistent with actual behavior. But this
inconsistency is not the main issue this paper aims to check.

B. Problem Formalization

To further facilitate the understanding of data minimization
analysis, we formally define the target problem in the context
of general applications, including browser extensions.

A Minimized data set is defined based on the purpose,
specifically the functionality.

Definition 1: The minimized data collection of a function-
ality f is defined as a set, MIN(f) = {d1, · · · , dk}, with k
data types. MIN(f) is the minimum data for f to achieve
the purpose.

Definition 2: Given an extension ext, the functionality of
ext is a set F (ext) = {f1, f2, · · · , fp} with the arity p. The
set of minimized personal data (MPD) for the extension is
defined as the union set of minimized data types from F (ext):

MPD =

p⋃
i=1

MIN(fi)

Definition 3: Given an extension ext, the actual data col-
lection is a set, CPD = {d1, · · · , dk}, with the arity k.

Definition 4: (Compliance of Data Minimization) Given
sets MPD and CPD of an extension, the data minimization
principle is satisfied if CPD ⊆ MPD. Otherwise, it is violated.
Intuitively, if an extension collects more data than its mini-
mized data set, we consider the principle to be violated.

IV. MINDAEXT OVERVIEW

The workflow of MINDAEXT is presented in Figure 3. It
extracts MPD and CPD respectively from minimized data
inferer and collected data analyzer, solving the two main
challenges we discussed in Sec I.

Minimized data inferer This module provides a reference
of MPD for an extension in two aspects: 1) extracting min-
imized data types MIN(f) for each functionality indicated
by its description text analysis and 2) referring to the data
collection behaviors of counterpart extensions. Firstly, we
leverage natural language processing (NLP) models to identify
the functionality and label pre-defined minimized data types
indicated by the functionality for each extension from its
description text. Particularly, we train BERT and BiLSTM
and compare them with GPT-3.5. To train NLP models or
examine results from GPT-3.5, we label a corpus, MINDA-
128 with 2421 sentences. And we select the model with the
best performance, BERT, in MINDAEXT. Details in Sec V-A.

However, extension developers do not always describe all
the functionality in the description. They are also not responsi-
ble to do that. In this case, fully relying on the description text
to extract all the functionality from extensions is insufficient.
We include counterpart analysis to supplement the MPD set.
For each extension, we calculate the text-similarity between
its description text and others. Similar to POLICYCMP [1],
we rank the text similarity and identify the most similar 20
counterpart extensions. Then, we define the essential index to
evaluate the likelihood of the data from these 20 counterparts
being necessary. For the data that essential index is greater
than 0, we collect them into the MPD set. Details will be in
Sec. V-B.

Note that, unlike related works [1], [7], [2] that take privacy
policies as an important source to infer functionality, we adopt
description texts instead of privacy policies or other extension-
specific information for two main reasons. 1) Firstly, the
browser extension community lacks management of privacy
policies. Only 26.53% extensions provide a privacy policy in
the Chrome Web Store, which is a consensus by both Ling
et al. [25] and Bui et al. [6]. 2) Secondly, privacy policies in
the browser extension ecosystem are of poor quality. Among
40k available privacy policies, we found 54.64% of them
are duplicated with other products. In this case, little unique
information regarding functionality is available in the exten-
sions’ privacy policies. A detailed analysis of descriptions and
privacy policies is available in SectionVII-C.

Despite privacy policies, other extension meta information,
such as extension name, rating, download, reviews, and cat-
egory, is available in online stores but too coarse-grained to
infer unique extensions’ functionality. Ultimately, we decided
to use description text to perform a more reliable analysis
towards more extensions. Because almost every extension has
a description text briefly introducing its functions and features
ranging from several words to multiple paragraphs. This allows
us to analyze the MPD in 73.46% of extensions that do not
provide privacy policies. Moreover, we include counterpart



Fig. 3. MINDAEXT Overview

analysis as an important supplement source to cover the
shortage of the description. Details will be in Section V.

Collected data analyzer With MPD that defines which data
an extension should collect, we next identify which data an
extension really collects, i.e. CPD. This module utilizes the
following program analysis to extract CPD in two aspects:
1) code feature analysis on privacy-related APIs in source
code, and 2) runtime analysis on dynamically loaded UI pages
and network traffic. Firstly, we conduct code feature analysis
to identify obvious data collection behavior by simple API
matching. However, some code is generated dynamically, and
some data types are not collected by API (such as personal in-
formation). In this case, we have runtime analysis to construct
another half of the CPD. We execute the extension, imitate
user actions, and capture data collection behavior. Details will
be in Sec. VI. We note the absence of data flow analysis after
API identification. However, as far as we know, conducting
data flow analysis in JavaScript code is tedious, less precise,
and might cause false negatives, which is not what we expect.
We will discuss this in Sec. VIII.

Excessive data collection identification The last step is to
compare MPD with CPD. If CPD is the subset of MPD, the
extension is likely to be compliant with the data minimization
principle. Otherwise, there is potential excessive data collec-
tion behavior.

V. MINIMIZED DATA INFERER

The minimized data inferer of MINDAEXT aims to deter-
mine MPD. As privacy policies and other meta-information
suffer from the shortcomings we discussed above (Sec IV),
our analysis is based on its description text and counterparts.
MPD for each extension is the union set of the following two
parts:

A. Description-based MPD

The first part is to extract MPD from the description text
directly. Considering the impressive improvement made in
the large language models (LLMs), we are facing the choice
of using either general NLP models (e.g. LSTM [36] and
BERT [9]) or LLMs (e.g. GPT-3.5 [31] and GPT-4.0 [31]).
Both paths require a corpus to train the model or evaluate the
result. In this case, we annotate a corpus, named MINDA-128,

compare the performance among LSTM, BERT, and GPT-
3.5, and embed the model with the best performance into
MINDAEXT.

1) MINDA-128 Corpus: To train NLP models and evaluate
the accuracy of LLMs, we first construct the corpus, MINDA-
128, containing 2421 manually labeled sentences from 128
extension descriptions.
Preprocessing description texts. We first randomly assemble
128 extensions, with at least 10 extensions from each of
the 11 extension categories in the Chrome Web Store, and
the descriptions in high quality (e.g., at least five sentences;
no non-English word). This selection is to ensure sufficient
coverage of extensions exhibiting distinct features across var-
ious functionalities. Then, we divide each description text
into individual sentences using the Natural Language Toolkit
(NLTK [40]) and remove all non-ASCII characters.
Corpus annotation. For each sentence, we manually assign
a label mapping its implied functionality to one of the data
types listed in Table I. For example, we label the sentence
“Install the extension and sign up.” as UPI, as it suggests
the requirement to collect user profiles for registration. During
the annotation process, each sentence is independently labeled
by three of the co-authors. It takes an average of 4 minutes
for each annotator to label one sentence. If three annotators
assign the same label to one sentence, the label for this
sentence is confirmed. In case of any inconsistent labeling,
we would initiate a discussion, and further consult a privacy
law specialist and an experienced software developer (with
over five years in the industry) to reach a consensus over the
final label. The distribution of annotated sentences under each
data type is shown in Table III. There are 13 labels in total;
12 of them correspond to the 12 types of data we target, and
the last label, NA, indicates that the sentence cannot refer to
any data type. MINDA-128 is released in the repository [33]
to facilitate reproduction and future research.

2) Description-based MPD extraction: With the corpus,
MINDA-128, the next step is to have an NLP model. Con-
sidering the imbalance and limited size of MINDA-128 in 13
labels as shown in Table III, we adopt k-fold cross-validation
to train BiLSTM and BERT, with the value k in 10.

Moreover, we designed a conversation template to convert
MINDA-128 into dialogue format, used as the testing set for
GPT. Specifically, we fill each sentence from MINDA-128 into
the following conversation template: “Base on the description
text: [fill sentence here]. Which of the following 12 data types
are likely to be collected by the extension: (1) user profile
information (2) health information ... (12) file system? “.
The detailed 12 data types are shown in Table I but omitted
here. However, GPT always answers the question in a long
paragraph, which makes it difficult to extract results directly.
In this case, we append the following constraint sentences to
the end of the conversation template: “Only answer ‘yes‘ or
‘no‘ for each data type. And Only one type is collected in
maximum“. Therefore, GPT will respond with a formatted
answer, like “1. User profile information: No“, which can
easily be mapped to origin corpus labels. The performance is



TABLE III
LABEL DISTRIBUTION IN MINDA-128

Labels UPI HI FPI AI PCI LI WHI UAI WCI DI PS FS NA
No. of Samples 21 44 25 42 85 32 20 250 284 37 107 91 1383

Percentage 0.87 1.82 1.03 1.73 3.51 1.32 0.83 10.33 11.73 1.53 4.42 3.76 57.13

detailed in Sec. VII-B.

B. Counterpart-based MPD

The second part is to infer MPD from counterpart exten-
sions’ practices.

1) Counterpart identification: Firstly, we identify counter-
part extensions with similar functionality or purpose to the
target extension. We found that the description introduces the
basic functionality of the extensions in most of the case. Thus,
similar descriptions imply similar functionality of extensions.
So, we calculate description similarity between each pair
of two extensions, rank the similarity scores, and take the
top 20 as the counterparts. For the calculation of descrip-
tion similarity, we deploy the same approach as previous
works [1], [19], [22]. In the preprocessing stage, we remove
all stop words, non-ASCII characters, numerals, HTML tags,
URLs, and email addresses. Then, we apply stemming to all
word tokens to extract word roots. After that, we use a well-
trained Latent Dirichlet Allocation (LDA) model provided by
GENSIM to calculate the probability of a description being in
a certain topic. We set the number of topics to 30, as suggested
by both Gorla et al. [19] and Jiang et al. [22]. In this case, we
could construct a vector consisting of 30 probability values for
each description. By calculating the cosine similarity of two
vectors, we can quantify the semantic similarity of descriptions
from two extensions. Then, we identify the top 20 counterparts
by ranking the similarity score. The reason for selecting the
top 20 is in Sec. VII-B.

2) Counterpart-based MPD extraction: In this step, we
extract MPD from data types that counterparts collect. Here,
we introduce the essential index, I(d,E), to calculate the
necessity of a data type d for an extension E, as shown in
Eq. 1. In this formula, CPDk is the CPD of the k − th
counterpart extracted by collected data analyzer (will be
detailed in Sec VI) and σ is the essential threshold. If the
essential index satisfies I(d,E) > 0, we include the data
type d to the MPD set of the extension E. The key insight
is to calculate the proportion of counterparts that collect the
target data type and compare it with the essential threshold to
determine whether it should be included in MPD set of the
extension. Here, we set σ to 0.5. The selection of σ value is
discussed in Sec. VII-B.

I(d,E) =
1

20

∑
k=1,...,20

{
1, if d ∈ CPDk

0, otherwise
− σ (1)

VI. COLLECTED DATA ANALYZER

This section introduces collected data analyzer that identi-
fies the data collected by the extension in practice, i.e. CPD.
collected data analyzer get the union set of CPD from code
feature analysis and runtime behavior analysis.

A. Code Feature Analysis

The structure of extension source code is similar to the front
end of web applications. A special json file, manifest.json,
declares basic information about the extension, including the
name, version number, permissions, domains, etc. The remain-
ing file includes HTML, CCS, Javascript code, images, etc.

1) API extraction: We identify the CPD by checking the
usage of relevant browser APIs. To construct the target API
list, we refer to the official documentation from Chrome and
Firefox to identify the privacy-related APIs. Then, we map
those APIs to a specific relevant user data type. For example,
the calling of browser.history.getVisits() implies a potential
collection of data WHI. In summary, we identified 36 Chrome
APIs and 27 Firefox APIs from 126 developer APIs. The
complete mapping list from API to data type is available
on the repository [33]. Then, we use the tool esprima [10]
to parse JavaScript code into Abstract Syntax Trees (ASTs),
which provide a clear form of the code logic and the function
hierarchy. Then, we traverse the ASTs using depth-first search
(DFS) and identify all nodes in the type of CallExpression
related to function calls. We check the function name of these
nodes. If it matches with any API in the target API list, we
add associated personal data types to the CPD set. Note that
we only account for the APIs that call get() related functions,
like browser.action.get().

B. Dynamic Runtime Analysis

Another half supplement of CPD is from dynamic runtime
analysis. Since some code can be dynamically generated from
JavaScript code, simple static analysis might not capture all
CPD. In this section, we conduct a UI analysis to detect the
data collected from user inputs and a traffic analysis to detect
the data transmitted from the network traffic.

1) UI analysis: We design and implement a lightweight
UI analysis that simulates user actions and traverses extension
UIs by depth-first search. For each UI, we interact with all
page elements and observe if any CPD is requested. We
implement our tool using the well-known web automation
library Selenium [41].
Automatic installation and initialization. In the begin-
ning, our runtime analysis tool can automatically install
an extension by specifying the path of its source files



in the Driver Options provided by Selenium. This sim-
ulates the user-conducted installation process. Afterward,
our tool starts the extension (i.e., clicks on the exten-
sion icon on the right side of the browser’s toolbar)
and gets the extension’s initial pop-up page through the
paths “chrome-extension://[ext id]/[popup page]” and “moz-
extension://[dynamic u” “uid]/[popup page]” for Chrome
and Firefox extensions respectively. In particular, we extract
the dynamic UUID for Firefox extensions from the browser’s
memory by analyzing the page “about:config” and the field
of “extensions.webextensions.uuids”.
Traversing extension behaviors. With the setup of the initial
page, we then simulate realistic user interactions. We tend to
trigger as many actions/functions/new pages as possible. Based
on breadth-first search (BFS), we interact with all interactive
elements (i.e., buttons, links, forms, drop-down menus, etc.)
Note that we use the hash value derived from a concatenated
string consisting of the URL and DOM element list as the
identifier of a page state. During the traverse, we maintain a set
of hash values representing unique page states it has traversed.
By checking the hash set after each action, we can easily know
whether the current status has been reached previously. If it is
duplicated, we prune the following traverse to save time and
prevent loops.

The automatic page traversing works for most extensions
with simple UIs. However, it could be stopped by the scenarios
that login or registration is mandatory. Some extensions even
separate the registration procedure into a series of UI pages. To
handle such cases, we define six typical registration and login
action templates and prepare some pre-defined testing account
information (i.e. email address, username, and password).
The analysis follows our templates, automatically registers
testing accounts, logins into the account, and utilizes the
aforementioned method to traverse the extension behavior. If
extra verification is required, such as email link click and
CAPTCHA, we resort to manual efforts. In total, we found that
868 extensions require registration/login requirements, while
149 extensions require human verification.
CPD identification. In this step, we analyze the HTML
file of each unique page state to identify CPD that ex-
tensions request from the user. We extract the attributes of
input-related (e.g., <input>, <fieldset>) and operation-
related (e.g., <button>, <select>) tags. We further
project each to a specific data type by matching the string with
the target keywords. The full list of keywords is available in
the repository [33].

2) Network Traffic Analysis: During the extension page
navigation, we intercept the browser network traffic in the
background using MitMProxy [27]. To ensure the traffic is
generated by the target extension, we only test one extension at
one time in a plain browser without any other process running
in the background. To confirm a request’s source, we adopt
the same approach from Bui et al. [6] that sets the HTTP
Origin header of each request to chrome-extension://ext id
or moz-extension://ext id for Chrome and Firefox extensions
respectively. For the captured HTTP(S) requests, we extract

all the URLs, key-value pairs in query strings, request bodies,
and POST request forms. Then, we identify the collected and
transmitted data types by the same keyword-matching rules as
what is used in UI analysis.

VII. EVALUATION

In this section, we evaluate the accuracy and effectiveness
of MINDAEXT and perform a large-scale analysis to check
the compliance of data minimization practices among browser
extensions. Our analysis targets the following two research
questions (RQs):

• RQ1: What is the performance of MINDAEXT in ana-
lyzing data minimization practices? (Section VII-B)

• RQ2: What is the status quo of data minimization en-
forcement? (Section VII-C)

A. Data Collection

In this work, we target extensions on Chrome and Fire-
fox extension stores, covering over 85% worldwide market
share [24]. We use Sitemaps [18], [12] to obtain complete
lists of available extensions from official stores. The total
number of extensions is 196,599, with 167,577 Chrome and
29,022 Firefox extensions respectively. After deriving the
extension list, we deploy our extension source code crawler
on an AWS instance equipped with 4 vCPUs, 32GB RAM,
and 6TB storage. We started the crawler in October 2023,
and the collection process was completed within two days.
Then, we remove extensions without description, with non-
English descriptions, or unavailable source code. Finally, we
managed to automatically download the complete data (i.e.,
source code, description texts, etc.) from 122,587 Chrome
extensions (205GB of data) and 20,169 Firefox extensions (15
GB of data), on which we base our subsequent analyses.

B. RQ1: Performance of MINDAEXT

As mentioned in Section V, MPD consists of description-
based and counterpart-based information. In this RQ, we
compare the quality between descriptions and privacy poli-
cies. Then, we present the results for each MPD component
separately.

1) Descriptions and Privacy Policies: From sitemap
traversing, we collected 167,577 unique Chrome extension
IDs in October 2023. However, 91.38% (153,139 out of
167,577) are downloadable and still alive in the extension
store. Among those alive extensions, 99.53% (152,412 out
of 153,139) provide description texts. The distribution of de-
scription length is shown in Table IV. 93.87% of descriptions
are longer than 10 words, and 59.48% are longer than 50
words, which is sufficient to conduct a useful MPD extraction.
The distribution of languages these descriptions are written
in is shown in Figure 4. We calculate the logarithmic value
with base 10 for the number of extensions in each language.
50 languages are observed in descriptions, while English is
the dominant language, accounting for 80.02% (122,587 out
of 153,189). The top 5 languages are English, Vietnamese,
Russian, Japanese, and Chinese.



TABLE IV
LENGTH OF DESCRIPTION TEXTS

0-10 words 11-50 words 51-100 words 101-200 words ≥ 201 words
# of Ext 9,339 52,419 39,082 31,942 19,630
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Fig. 4. Distribution of Language Types

Among those alive extensions, 26.54% (40,644 out of
153,139) provide privacy policies. However, there are only
23,230 (out of 40,644) unique privacy policies. The most
interesting finding is that https://trawellcat.com is the most
repeated privacy policy link, which has been used in 796
extensions. But it is not linked to any privacy policy content.
Moreover, there is an individual developer who provides one
privacy policy for all 341 extensions he released in the Chrome
Web Store. The distribution of privacy policy repetition times
is shown in Table V. Only 45.36% (18,438 out of 40,644)
privacy policies are specialized for one extension. Other com-
munal privacy policies cannot always describe an extension’s
functionality and purpose precisely. Considering the limited
amount of privacy policy and widespread repetitions, the
identification of MPD in MINDAEXT is from descriptions
instead of the privacy policy.

2) Description-based MPD: The accuracy of MPD iden-
tification mainly relies on the performance of NLP models.
We compare the performance of BiLSTM, BERT, GPT-3.5,
and GPT-4.0 with regard to precision, average weighted recall
rate, and F1 score, as shown in Table VIII. We find that BERT
performs the best. So BERT is embedded into MINDAEXT
at last and used in large-scale analysis. The performance of
BiLSTM and BERT is limited by the size of the training data
set, MINDA-128. However, two GPT models give the worst
performance in this classification task. During the experiment,
we found that we could not force GPT to annotate the data
with only one label, even though we add the sentence, “Only
one data type in maximum.“, into the conversation template.
We only provide data type names to GPT, which can be
improved by giving detailed explanations of each data type
in the conversation template. And answers from GPT are
not always consistent, which can be improved by executing
multiple times and getting the average result. We leave these

TABLE V
DISTRIBUTION OF PRIVACY POLICY REPETITIONS

Repetitions 1 time 2 times 3-5 times 6-10 times
# of PP 18,438 2,655 1,487 375

Repetitions 11-20 times 21-50 times 51-100 times ≥ 101 times
# of PP 194 53 17 11

TABLE VI
ACCURACY OF COUNTERPART-BASED CPD UNDER DIFFERENT

COUNTERPART NUMBERS AND ESSENTIAL CONSTANT

σ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
Top 10 0.3 0.2 0.3 0.5 0.5 0.4 0.3 0.4
Top 20 0.5 0.6 0.5 0.5 0.6 0.4 0.6 0.3
Top 30 0.3 0.4 0.5 0.5 0.5 0.3 0.4 0.4

TABLE VII
NUMBER OF UNIQUE PAGES

# of Ext Without UI With UI
1 Page 2-5 Pages 6-10 Pages ≥ 11 Pages

Chrome 47,452 45,043 26,498 2,152 1,443
Firefox 16,081 2,350 1,608 116 13
Total 63,533 47,393 28,106 2,268 1,456

improvement tasks in GPT for future work.
3) Counterpart-based MPD: Following the approach de-

tailed in Section V-B, we select the top 20 counterparts
based on description text similarity. Then, we determine the
MPD set based on the essential index. In essential index
I(dj , C) (given by Equation 1), essential constant σ is set to
0.50. We randomly select 10 extensions and manually annotate
MPD as the baseline. We test the accuracy of counterpart-
based MPD under different combinations of counterpart num-
bers and essential constants. We choose the best-performing
combination: top 20 counterparts and σ at 0.5. We note the
baseline is too small; our chosen values might be unreliable.
Considering the validity check of the final analysis result (to be
discussed soon) is good enough, we leave the task of finding a
more reliable counterpart number and σ value for future work.

4) CPD Extraction: CPD consists of two parts: code
feature analysis and runtime analysis. In runtime analysis,
we find that 44.5% extensions (63,533 out of 142,756) do
not have any UI, as shown in Table VII. Because some
extensions would only be active in the background when
visiting certain URLs. These URLs are the host URLs that
must be declared in manifest.json. In such cases, we open the
host URL in the browser, click the extension icon, and rely
on the network traffic to detect CPD. However, this method
is still not comprehensive enough to trigger all the extensions.
For example, we cannot trigger the action that the extension
inserts as an option in the right mouse-click menu. As far as we
know, no existing work provides a complete action template
list to cover all cases. We leave this to future work.

5) MPD and CPD Validity Check: Getting the MPD and
CPD of an extension, we evaluate the overall accuracy of
MINDAEXT. We randomly sample 50 Chrome and 50 Firefox
non-overlapping (i.e., descriptions not included in the corpus)
extensions from the dataset. To confirm the accuracy of their
MPD and CPD from MINDAEXT, we need to construct a
baseline for those 100 extensions. Three co-authors annotated
MPD and CPD for each extension by reading the descrip-
tion from the extension store, downloading the extension to
understand its functionality, and observing any data collection
behavior in the testing. Any inconsistency between baselines



TABLE VIII
NLP CLASSIFICATION RESULTS ON MINDA-128

Algorithms Precision Recall F1 Algorithms Precision Recall F1
GPT-3.5 0.53 0.55 0.52 Bi-LSTM 0.54 0.62 0.57
GPT-4.0 0.53 0.54 0.52 BERT 0.62 0.65 0.59
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Fig. 5. Percentage of Extensions v.s. Data Types

from three co-authors will invoke a discussion. With the base-
line, we compare it with the MPD and CPD. For the accuracy
of MPD, 53% exactly match the baseline, 87% contain two
mismatches at most, and 98% contain five mismatches at
most. For the accuracy of CPD, 65% match the baseline,
80% include the baseline but contains false positives. For
the overall accuracy of examining data minimization, out of
the 35 extensions with actual data minimization violations,
MINDAEXT detects 22 (62.9%) of them (exactly match in
each data type). If we focus on whether MINDAEXT labels an
extension as compliant or incompliant correctly (the violation
data types might be different), MINDAEXT detects 26 (74.3%)
of them, with 6 (9.23%) false positives.

C. RQ2: Enforcement Status of Data Minimization

We apply MINDAEXT to systematically analyze the status
quo of the data minimization practices implemented for each
extension. To this end, we present the results in each step,
followed by the data minimization compliance analysis and
feature relevance analysis.

1) Identified MPD: The distribution of extensions that
contain each data type in MPD is shown in Figure 5. We
find that UAI and WCI are the most necessary data types
that more than 30% extensions have in Chrome and over
80% in Firefox. This finding coincides with the stereotype
of extension’s functionality that facilitates user experience
when browsing general websites. Because UAI and WCI are
essential data types in this scenario for extensions to detect
and react to specific user actions and website contents. We
also find that PCI and FS are more popular among Firefox
extensions than Chrome. And WHI and DI are popular in
Chrome extensions but not in Firefox. The number of data
types included by MPD in each platform is shown in Figure 6.
We will discuss this later with the identified CPD.

2) Identified CPD: we follow the technique in Section VI
to detect data collection practices from code feature analy-
sis (API) and runtime analysis (UI and Traffic). The collection
of each data type found in each analysis step is shown
in Table IX. Empty cells represent the data that cannot be
detected in this step. For example, UI analysis cannot find
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Fig. 6. Number of Data Types Collected in MPD and CPD

TABLE IX
DISTRIBUTION OF DATA TYPES COLLECTED

Data Types
Chrome Extension Firefox Extension

Code Runtime Code Runtime
API UI Traffic API UI Traffic

UPI – 4,673 15,819 – 229 190
HI – 158 586 – 16 21
FPI – 125 366 – 8 22
AI 3,063 4,809 19,148 195 322 875

PCI – 1,301 1,712 – 77 101
LI 387 162 407 32 14 18

WHI 2,732 – – 471 – –
UAI 77,806 – – 15,342 – –
WCI 79,304 – – 14,744 – –
DI 4,170 226 65,024 948 25 75
PS 5,665 277 577 1,258 22 33
FS 30 232 236 1 27 10

‘‘–” represents data is unavailable in this step.

WCI, UAI, WCI, but can capture most user inputs (i.e., UPI
and AI). The union of the three CPD subsets covers all data
types. The distribution of CPD against the number of data
types is presented in Figure 6. We find that the overall number
of data types from CPD is less than MPD. On the platform
level, Chrome extensions are inclined to require more types
of data than Firefox.

3) Status Quo of Data Minimization Compliance: We com-
pare MPD with its CPD for each extension to obtain the
potential compliance status. We identified two possible states:
compliance (CL), where CPD perfectly matches or is the
subset of MPD; otherwise, incompliance (ICL), where CPD
contains data beyond MPD. The compliance status in total
and in different numbers of data types in CPD are shown
in Table X. Overall, we identified 39.89% (48,863 out of
122,587) ICL extensions in Chrome, 26.69% ( 5,383 out of
20,169) in Firefox, and 38.00% ( 54,246 out of 142,756) in
total. Out of them, over half abuse more than two types of
personal data. A high proportion of incompliant extensions
collect more than 5 data types. The proportion of excessive
data collection in different data types is shown in Figure 7. We
observe that UAI, WCI, and DI are top targets for Chrome
and Firefox extensions. And excessive collected data types
distributed differently in two platforms. For example, UPI
and AI are excessively collected among 15.9% and 16.4% of
Chrome extensions, but only a few exist in Firefox extensions.

4) Feature Relevance in Data Minimization Compliance:
We identify some simple but interesting characteristics in
incompliant extensions that users and privacy regulation audi-



TABLE X
(IN)COMPLIANCE STATUS VERSUS NUMBER OF DATA TYPES IN CPD

Platform Status Total 0 1 2 3 4 5+

Chrome
CL 115,289 23,190 31,724 38,530 19,150 2,035 660
ICL 48,863 0 6,882 13,097 14,092 5934 8,858

Firefox
CL 14,786 5,547 3,899 5,132 203 5 0
ICL 5,383 0 1,137 1,965 1,773 402 106

CL: Compliant; ICL: InCompliant
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tors can refer to. We propose 4 features that users always
notice when browsing extension stores, covering extension
size, length of the description, ratings, and downloads, as
listed in Table XI. We use Odds Ratio (OR) to measure each
feature’s relevance between the complete sets of compliant and
incompliant extensions. The larger the OR (higher than 1), the
stronger the positive correlation, and the smaller the OR (lower
than 1), the stronger the negative correlation. Considering the
OR is based on two events, but the value of our features is
continuous, we have to find a threshold to separate each feature
into two statuses (e.g. Rating > 4.8 and Rating ≤ 4.8). We
calculate the OR using different thresholds and select the one
yielding the most obvious correlation.

The OR for each feature with one threshold is shown in
Table XI. We find that extensions with smaller sizes, shorter
description sentences, and fewer downloads have higher rel-
evance to excessive data collection behavior. However, the
rating cannot imply the compliance of extensions under the
data minimization requirement. It is likely that ratings mainly
indicate what users care about, like the completeness of
functionality, instead of the hidden excessive data collection.

VIII. DISCUSSION AND LIMITATION

A. Implications

The analysis results reveal the wide gap between the data
minimization principle mandated by the privacy regulations
and browser extension data collection practices, highlighting
the previously neglected critical risk of excessive user data
collection and abuse. The prevalent violations advocate fur-
ther efforts towards efficient approaches for examining such
compliance issues from end to end. Toward data minimization
compliance, precisely defining the qualitative minimization
concept is a complicated task, hindered by subjective inter-

TABLE XI
ODDS RATIO VALUES OF EXTENSION FEATURES

Platform Meta Features
Ext Size
(KB)

No. of Sentences
in Description Ratings No. of

Downloads

Chrome <30,000 <20 >4.8 <5,000
1.69 1.47 1.02 1.18

Firefox <10,000 <15 >4 <10,000
1.69 5.31 1.06 1.33

pretations of terms, such as “necessary”, “relevant”, and
“adequate”. MINDAEXT takes one step forward to automate
MPD identification for general applications, especially for
browser extensions. MINDAEXT cannot provide law verdicts
but provides references for legislators and store operators to
facilitate the compliance auditing process.

B. False positives

The MPD from minimized data inferer is an under-
approximation of the real MPD, because it cannot cover the
functionality never mentioned in the description or other exten-
sion meta information. And CPD from collected data analyzer
is an over-approximation, because we include the data type
into CPD once the API is detected. Sometimes, privacy-related
APIs might not be executed or reachable eventually, or the
data might only be accessed but not transferred to the server
side. We did not include data flow analysis, which might cause
false negatives. We utilize false positives from this step. With
the over-approximated CPD and under-approximated MPD,
MINDAEXT maintains a high recall rate in examining data
minimization practices. We do not want MINDAEXT to miss
any possible excessive data collection. The current accuracy is
acceptable (see Sec VII-B). Based on it, we can reduce false
positives in future work.

C. Counterpart Assumption

The correctness of counterpart reference is based on the
assumption that most extensions comply with the data mini-
mization principle. If most extensions violate the regulation,
collecting excessive data, counterpart-based MPD will also
include such excessive data. Our results show that the assump-
tion holds in the current browser extension ecosystem.

D. Transferability

Adaptability for different privacy laws. MINDAEXT can
be applied to other privacy laws that contain the same data
minimization requirements, such as GDPR, CPRA, and PIPL.
Adaptability for different usage scenarios. MINDAEXT can
be extended for examining the data minimization against other
applications, such as mobile and IoT-related applications. The
extraction of MPD will remain the same if description texts
are provided with high quality. However, the extraction of
CPD will require modification in code features and runtime
analysis. Because the API list, programming language, and
tool for dynamic testing might have changed. Nevertheless, the
basic idea and approach can be adapted to other applications.



IX. CONCLUSION

Towards better data minimization compliance among ex-
tensions, we propose MINDAEXT for an automatic end-to-
end examination of this data collection principle in browser
extensions. MINDAEXT determines the minimized data set
necessary for its functionality based on description analysis
and counterpart reference. Then, MINDAEXT leverages code
feature analysis and runtime analysis to derive the data col-
lection practices for comparison. Based on our large-scale
study of over 142K browser extensions, we have identified
prevalent possible excessive data collection in 54,246 exten-
sions (38.0%). Our work unveils the previously neglected user
privacy threat, highlighting the necessity for service providers
and platform operators to enact better data minimization
compliance.

X. DATA AVAILABILITY

We open-source MinDaExt implementations on our anony-
mous repository [33], including the extension crawler, code
feature analysis, runtime analysis, and the corpus MINDA-
128. In addition, we also release the intermediate analysis
results as mentioned throughout the paper.
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Zdravkovic, Jānis Grabis, Selmin Nurcan, and Janis Stirna, editors, BIR,
pages 18–28, 2018.

[43] European Union. General data protection regulation. https://gdpr-
info.eu, 2016. Accessed: 2022-11.

[44] Sinan Wang, Yibo Wang, Xian Zhan, Ying Wang, Yepang Liu, Xiapu
Luo, and Shing-Chi Cheung. Aper: Evolution-Aware Runtime Permis-
sion Misuse Detection for Android Apps. arXiv preprint, 2022.

[45] Le Yu. Identifying privacy issues in mobile apps via synthesizing static
analysis and NLP. PhD Thesis of Hong Kong Polytechnic University.

[46] Le Yu, Xiapu Luo, Jiachi Chen, Hao Zhou, Tao Zhang, Henry Chang,
and Hareton KN Leung. Ppchecker: Towards Accessing the Trustwor-
thiness of Android Apps’ Privacy Policies. IEEE TSE, 2018.

[47] Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang. Toward
Automatically Generating Privacy Policy for Android Apps. TIFS,
12(4):865–880, 2017.

[48] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. PrivacyFlash
Pro: Automating Privacy Policy Generation for Mobile Apps. In NDSS,
2021.

[49] Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichan-
der, Ziqi Wang, Joel Reidenberg, N. Cameron Russell, and Norman
Sadeh. MAPS: Scaling Privacy Compliance Analysis to A Million Apps.
Number 3, pages 66–86, 2019.


